Destruction of Archeological Sites in Texas
Results of the THC Stewards’ Resurvey Project

by Dan Potter
THC North and Central Regional Archeologist

Most of us will probably agree that our archeological sites are disappearing at a disturbing rate. Bemoaning this problem has become a collective, ineffective mantra. Systematic studies of site loss in Texas, or for that matter in other states, have been almost nonexistent, perhaps because of the high cost of conducting them.

Before the study reported here — the Texas Historical Commission (THC) Stewards’ Resurvey Project — our best information came from other states, but the data have been generally spotty, somewhat impressionistic, and mostly concerned with sites on federal lands. An assessment conducted by the Arkansas Archeological Survey (Limp 1987) provides an exception. Limp reported that 87 percent of recorded sites in Arkansas were found in a disturbed state, with 35 percent totally destroyed. He described the problem as “out of control.”

Survival of previously recorded sites as observed by THC archeological stewards. On the basis of surface inspection only, they found that 53 percent of the resurveyed sites were more than 50 percent intact and 47 percent were less than 50 percent intact.
One Step Forward, Two Steps Back

Information about site loss in Texas remained anecdotal (and essentially useless for planning or educational purposes) until the 1970s when Bob Mallouf, then the State Archeologist, conducted an important baseline study. Mallouf recalls that the study took about a month and involved most or all of his staff. The staff examined site loss, especially from large-scale construction of highways, reservoirs, housing, and the like, and from this information estimated overall site loss in Texas. Estimates of damage from looting and collecting were also included, but this factor was more difficult to quantify (Mallouf, personal communication 1996).

The study suggested that each year more than 4,000 archeological sites in Texas were completely destroyed and an additional 6,000 partially damaged, resulting in a projected casualty list of 40,000 sites lost and 60,000 damaged per decade. The study was not published, but the THC and others have used the estimates in public communications and for educational and policy purposes.

Mallouf’s results must have had a chilling effect on anyone who read them. The projected number of sites lost or damaged every 10 years amounted to twice the number the archeological community was able to record in the same period of time. Roughly stated, for every site recorded, two were lost or damaged — one step forward, two steps back. Or, as the old saying goes, we can’t win for losing.

Furthermore, the 40,000 figure dwarfed the size of Texas’ entire recorded site inventory at that time, which was then in the range of 20,000 to 25,000 sites (Carolyn Spock, personal communication 2004). Texans could well agree with Arkansas colleague Limp that site loss was out of control.

Today, three decades after Mallouf’s study, the recorded site inventory in Texas has grown to only 65,000 sites, a small percentage of what is actually out there.

The goal of this resurvey study was to take another look at site loss in Texas and attempt to quantify it more systematically. The intent was to provide a quick snapshot of site preservation within a randomly selected and well-controlled population of Texas sites. We hoped that by assessing current conditions at previously recorded sites we might gain a clearer picture of site loss.

An Army of Volunteers

The THC was able to carry out this research only because of the existence of the agency’s Texas Archeological Stewardship Network (TASN), a group of trained and experienced avocational archeologists who performed the fieldwork. The TASN, more simply known as “The Stewards Network” or just “The Stewards,” is a unique resource for Texas archeology and remains one of very few volunteer public archeology programs in the nation.

The brainchild of Mallouf, his staff, and a few visionary leaders in the Texas archeological community, the TASN has been in existence for more than 20 years. At its inception, the network numbered 10 avocational volunteers who provided archeological assistance in the state’s 254 counties. Over the years it has grown to 100-plus members (see map on page 28). Its ranks have included engineers, police officers, cotton farmers, attorneys, ranchers, retired couples, nurses, artists, and one rocket scientist. The characteristics common to all stewards are a keen interest in archeology, some degree of archeological experience, and a willingness to donate their hard work for the cause.

Stewards serve in many ways. They may donate their time and talents to site recording, monitoring of important sites, excavation, research and publication, public speaking, creating museum displays, and organizing Texas Archeology Month events. While stewards generally focus on private-land research — more than 95 percent of Texas’ land is privately owned and thus contains the great majority of the state’s archeological resources — they also volunteer for public projects. Stewards serve four-year terms, working primarily with four professional regional archeologists on the THC staff.

TASN members invest a significant amount of time and labor in their work and travel great distances to perform it, but receive no payment or reimbursement of expenses. During one recent year, stewards contributed time equal to nine full-time professional staff members, for less than one percent of the cost. In these days of limited state budgets and
shrinking resources, it is puzzling that so few state programs of this type exist. A notable exception is the Arizona Site Stewards program. The accomplished Arizona Site Stewards play a different and more narrowly focused role, however, limited to site monitoring and protection of recorded sites on state and federal lands.

Regardless of function, volunteer public archeology programs such as the TASN offer great rewards to state archeologists and state historic preservation offices, and at minimal cost. They also serve as an illustration that the public is involved in “public archeology” — and that archeology is too important to be left solely to professional archeologists.

Research Design and Methodology
Ideally, counties included in this study would have been chosen randomly. This consideration is important, as the strength of any conclusions based on these data depends in part on a demonstrable lack of bias in sample selection. This strategy was not workable, however, because the sites had to be sufficiently close to where stewards live and work. Therefore, the stewards themselves selected 31 counties for resurvey, encompassing an estimated 956 randomly chosen archeological sites. As originally conceived, the study would have provided an approximate 1.5 percent “somewhat random” sample of all recorded Texas sites.

At the close of the resurvey work, data from 401 archeological sites in 15 counties had been collected and submitted, not as large a sample as originally planned, but workable nevertheless. The following counties were resurveyed: Bosque, Brazoria, Camp, Chambers, Galveston, Grayson, Hidalgo, Hill, Kerr, Marion, Shelby, Tarrant, Titus, Tom Green, and Upshur.

We used Microsoft Excel’s random number generator to produce lists of 35 target sites per county (see example in Figure 1). A list of alternate or backup sites, also randomly selected, was added in case of the initially selected sites were not accessible. If a targeted county contained fewer than 35 recorded sites, all recorded sites in the county were selected for resurvey.

TASC stewards launched into resurvey in 1997 and continued through 1998. THC staff provided forms for recording observations, quad maps with plotted site locations, and other background site information for the stewards’ use in the field. Four classes of data were recorded on the forms: general site environment, percent of site remaining, cause of damage, and effect of damage (Figure 2). Each class of data on the form contained subfields in a checkbox format, which facilitated the rapid collection of detailed information.

Our research design called for site evaluation through surface inspection only, with no subsurface testing and no collection of artifacts from surface or subsurface contexts. While shovel testing probably would have produced more accurate results, particularly when a site had thick ground cover or substantial subsurface deposits, the excavation and curation of recovered artifacts was beyond the scope of the project.

We noted in the course of the work that some site records at the THC and the Texas Archeological Research Laboratory (TARL) at the University of Texas at Austin (the state’s primary repository for archeological data and the issuer of new trinomials) were incomplete. The most common deficiencies were vague or missing locational plottings or missing site record forms (i.e., sites with trinomial and locational plotting, but no other associated information). We did not track this problem closely, but in hindsight we should have. Some county resurveys show that this issue may not be a minor one. For example, steward Bo Nelson observed that specific locational plottings for three of the 35 randomly selected sites in Camp and Marion counties were missing. In Camp County, sites 41CP1, 41CP11, and 41CP215 were AWOL (see Figure 1), and in Marion County, specific location information was absent for sites 41MR17, 41MR26, and 41MR36.

Thus, one of the first findings of the resurvey project relates to the quality of existing site records in Texas. If the Camp and Marion county samples are representative, Texas may have an uncomfortably high level of inadequate site location data, perhaps 5–10 percent of the recorded site inventory. It is likely that this is a more serious problem with sites recorded in earlier years, and that information from more recently recorded sites is in much better shape. Currently, and wisely, TARL does not issue a trinomial unless the recording archeologist provides a confirmed site plotting and a completed site record form. Generally speaking, however, the problem appears to persist in the total site inventory and remains a flaw that must be corrected.

Results
As described previously, data were collected in four general categories for each site in the study. It should be noted that multiple answers could be provided when describing the causes and effects of damage. For example, damage might be caused by both “farming/ranching” and “looting/collecting.” Similarly, a range of different impacts was possible for each site, as shown in Figure 2, where damage effects to site 41CH131 included “built over,” “churned/displaced,” “machine cleared,” and “terraced/contoured.” As a result, our sample of 401 resurveyed sites yielded 906 damage observations. We received fewer than 401 observations in some data categories, on the other hand, simply because stewards did not record their observations in all categories for all sites.

General Site Environment. The sample of 401 sites produced 372 observations regarding general site context; for some resurvey sites, stewards either could not, or did not, record observations in the General Site Environment category. The overwhelming majority, 76 percent of our resurvey sites, are
Figure 1. Lists of sites randomly selected for resurvey were produced for each county. Archeological steward Bo Nelson's penciled notations above indicate sites in Camp County that could not be accessed or had no locational plotting, as well as the sites selected to replace those problem sites.
Figure 2. Field data could be quickly recorded on the site-damage forms. In this example from Chambers County, stewards Sheldon Kindall and Richy "Cap" Ebersole and a park ranger visited the location of a recorded site and found it essentially destroyed.

![Texas Archeological Stewardship Network Site Damage Form](image)

- **SITE**: 41CH131
- **DATE**: 5/18/97
- **RECORDED**: Sheldon Kindall
- **STEWARDS INITIAL**: SMK
- **CREW ON SITE**:
 - Sheldon Kindall
 - Richy Ebersole
 - Charles Craddock (Walbissville Park Ranger)

GENERAL SITE ENVIRONMENT

- [] URBAN/DOWNTOWN
- [] SUBURBAN
- [X] RURAL FARMING
- [] RURAL RANCHING
- [] OTHER
 - adjacent to large scale lock construction on the Trinity River

PERCENT REMAINING

- [X] 0%
- [] 1–25%
- [] 25–50%
- [] 50–75%
- [] 75–99%
- [] 100%

DESCRIBE THE DAMAGE

COLUMN A: CAUSE

- [] COMMERCIAL
- [] RESIDENTIAL
- [] RECREATIONAL
- [] FARMING/RANCHING
- [X] PUBLIC WORKS
- [] VANDALISM
- [] LOOTING/COLLECTING
- [] UNKNOWN
- [] OTHER

COLUMN B: EFFECT (INDICATE ALL THAT APPLY)

- [] ERODED
- [] GRADED
- [X] CHURNED/DISPLACED
- [] ROAD
- [] CHAINED
- [X] WAVE ACTION
- [X] TANK
- [X] MACHINE CLEARED
- [] HOUSING
- [] PLOWED
- [X] BUILT OVER
- [X] TERRACED/CONTOURED
- [] DEFACED
- [] INUNDATED/FLOODED
- [] DEMOLISHED
- [] OIL/GAS RELATED
- [] OTHER

NOTES: There is still a slight trace of the site, but not for long.
located in rural ranching, farming, or unspecified rural environments (Figure 3). Since rural lands make up roughly 94 percent of Texas’ land area (Texas Agricultural and Natural Resources Summit Initiative 1996), archeological sites on rural lands remain under-represented both in our sample and in the total site inventory. At the other end of the scale, urban or downtown contexts applied to only 2 percent of the resurvey sites. This figure is roughly in keeping with the amount of urban land area in Texas, which ranges .5–7 percent (Texas Parks and Wildlife Department 2002). I have not encountered any published estimates of the percentage of suburban land in the state. However, by extrapolation from the land use figures cited above, we can assume that suburban land (a difficult term to define clearly) accounts for less than 6 percent of Texas’ total land area. Thus, suburban sites are probably over-represented in our sample, because less than 6 percent of our land produces 12 percent of our recorded archeological sites. This finding makes perfect sense intuitively, since suburban areas are among the most actively developed lands in Texas, and these are precisely the contexts in which archeological sites are discovered, recorded, and frequently destroyed or damaged.

Site Survival. The pie chart on page 1 presents the stewards’ findings regarding how well sites were surviving. On the basis of surface inspection, stewards made 348 observations about the “percent remaining” of sites. They found that 53 percent of the resurvey sites were more than 50 percent intact and 47 percent were less than 50 percent intact. Given the difficulty of assessing site damage by surface inspection alone, these data should be viewed with a healthy dose of caution. However, it can be reasonably argued that about half the sample sites have been significantly damaged and approximately a quarter of them have been destroyed altogether.

By applying these figures to the recorded statewide site inventory of 65,000 sites, we can estimate that roughly 30,000 recorded sites in Texas have sustained significant damage. Of these, about 15,000 have been completely destroyed. On a positive note, the combined number of untouched sites (with 100 percent remaining) and largely intact sites (75–99 percent remaining) is also significant, in the range of 44 percent of all sites.

Causes of Site Damage. Stewards made 456 observations regarding the causes of damage to the 401 sites in the sample. They were asked to assign causes of damage to one or more of nine different categories, as listed on the site-damage form (Figure 2). Two causes, farming/ranching and public works, were by far the most commonly cited. These two categories accounted for more than half the site damage observed (Figure 4).

Given that farming/ranching activities occur over a much larger portion of the state’s land area than the other causes considered in the study, it is to be expected that they would be the most common sources of damage to sites. Furthermore, it is not particularly surprising that 24 percent of the sites were harmed by public works projects. It has long been known that these projects are highly destructive of archeological sites, which is the reason state and federal preservation laws have been in place for decades. Similarly, the finding that residential development had impacted about 10 percent of the sample sites seems consistent with the aforementioned finding that 12 percent of the sites were in suburban contexts.

Other results might be more surprising. The number of sites exhibiting evidence of looting and/or collecting was small, amounting to only 7 percent of the sample sites. Several comments can be offered about this result. Collecting activities typically leave very little trace. While many collectors leave small, easily recognizable “sorting piles,” others do not, and therefore collecting activity may be under-recorded in our data. Subsurface looting, on the other hand, does leave abundant visual evidence, which stewards would be unlikely to overlook.
I believe the low incidence of looting/collecting at the resurvey sites may in fact be representative of Texas in general. The results may indicate that looters prefer to focus on a small percentage of sites, particularly those that are easily accessible without undue risk or effort, are easy to dig (mine) with a minimum of effort, and that have large numbers of finished artifacts of high commercial value. In other words, the TASN results may indicate that Texas looters are pretty selective about the sites they destroy.

Effects of Site Damage. Stewards were asked to characterize the physical appearance of damage to sites and were given 24 different effects of damage to choose from (Figure 2, Column B: Effect). Multiple forms of damage could be recorded for any individual site; stewards made a total of 906 damage observations about the 401 sites.

As can be seen in Figure 5, many of the most common effects of damage are associated with rural contexts, including erosion, contoured slopes (an erosion-control measure for cultivated land or pasturage), plowing, and so forth. Effects such as road building, inundation, and wave action were also among the most common effects and, as discussed earlier, are perhaps most commonly associated with public works.

The resurvey data clearly indicate that in the overwhelming majority of cases humans cause the damage to archeological sites. The “eroded” and “other” effect categories are likely the only two that include purely natural, rather than human-made, damage. But even here, humans may be the ultimate cause. Sheet erosion may impact a site in rural ranchland, for example, and rotational grazing and other management practices cause a huge amount of erosion in rural ranch and farm settings, which in turn directly affects site preservation. Effect categories such as “wave action” and “inundated/flooded” are the results of human activity in all the resurvey cases.

Summary, and a Look to the Future

It is our hope that the Texas resurvey project has produced data on site loss and site damage that are more useful, detailed, and systematic than the information previously available. At the same time, we are aware of the weaknesses of this study and have discussed here our dependence on a relatively small sample, our reliance on surface inspection only, and the lack of a true random sample.

Nevertheless, the TASN resurvey has increased our understanding of site survival in Texas. It suggests that roughly half the state’s recorded site inventory has sustained severe damage, and it characterizes the causes and physical effects of that damage. The study indicates that fewer than one in five (16 percent) of Texas’ recorded sites are in “untouched” condition.

It can be argued that at least some of the data loss recorded in our study has been mitigated by research required by Section 106 of the National Historic Preservation Act or the Texas Antiquities Code. While this is surely the case, it is also true that most research projects of this sort excavate only tiny portions of impacted sites, typically less than 5 percent (James Bruseth, personal communication 2004). It should also be noted that much of the damage to archeological sites falls outside preservation law jurisdiction and occurs without our knowledge and without remedy or mitigation. We have no data regarding this invisible universe of site damage and destruction.

The study also reminds us that the corpus of recorded sites within the state is neither static nor permanent. There may be some tendency to think that the 65,000 recorded archeological sites represent a permanent, unchanging, and indelible resource for today’s — and tomorrow’s — citizens, be they archeologists, Native Americans, historians, students, or others with a vested interest in the preservation of our past. But the TASN resurvey clearly shows that this record is anything but permanent. Our group of known archeological sites is a constantly changing population, to which some are added (recorded), others deleted (destroyed), and still others crippled (damaged) on a daily basis.

This underscores the fundamental importance of basic site recording, for it is only through recording that sites enter into the preservation process. After all, a landowner, city,
county, state, or nation can only manage and care for historic places that are known. We cannot save what we cannot see.

It must also be emphasized that avocational archeologists have played, and will continue to play, an enormously important role in site recording. The public tends to view archeology as excavation only, but the members of the TASN, the Texas Archeological Society, and our many regional archeological societies are in a perfect position to make huge contributions to archeology by wielding their pencils as site recorders as well as their shovels as excavators. We must never allow the crucial first step of site recording to be under-appreciated or under-practiced. Of all the factors involved in site preservation, here is one that is completely up to us.

Acknowledgments
The THC gratefully acknowledges the time, effort, and cooperation of the members of the TASN, without whom this study would not have been possible. Thanks to the following stewards and their crews for their work during this project: Jim Blanton, C.R. “Cap” Ebersole (former steward), Bill Foerster, Rachel Freyman Brown, R.C. Harmon, Bryan Jameson, Louis Jones, Sheldon Kindall, Glynn Osburn, Johnney and Sandra Pollan, Larry Riemenschneider, Bryant Saner, and Jimmy Smith.

The author especially wishes to express his gratitude for the help of two former stewards, Bo Nelson and C.K. Chandler, site recorders of the highest rank and archeologists of the first water.

Dedicated to the memory of C.K. Chandler

References
Bassett, Carol Ann

Carnett, Carol

Limp, W. Fredrick

Society for American Archaeology

Texas Agricultural and Natural Resources Summit Initiative

Texas Parks and Wildlife Department

This article was adapted from “Measuring Archaeological Site Survival in Texas,” by Dan Potter, which appeared on pages 7–13 of the January 2006 issue of the SAA Archaeological Record, published by the Society for American Archaeology.
Goals of Testing
Archeological testing was carried out at the McGloin Bluff site, 41SP11, by Coastal Environments, Inc. (CEI) in August 2004. The work was sponsored by the Port of Corpus Christi Authority and was designed to test the site for eligibility for listing on the National Register of Historic Places. CEI had surveyed the site at the request of the Port in spring 2004 as part of a 432 acre tract of land the Port had acquired. Shovel tests done during that survey had shown that parts of the site contained abundant artifacts pertaining to the Late Prehistoric Rockport phase, particularly numerous fragments of Rockport Ware pottery. The primary goals of the testing were to better define the range of prehistoric artifacts at the site and to assess the integrity of the culturally relevant deposits.

Environmental Context
Site 41SP11 is situated on the top of a long, narrow, sand dune that parallels the southern shoreline of Live Oak Peninsula on the north shore of Corpus Christi Bay. Live Oak Peninsula is a part of the Ingleside Strandplain, a sandy clay deposit perhaps approximately 100,000 years old (Brown et al. 1976). Most of the peninsula is today capped with a veneer of eolian sand, creating a hummocky topography that supports dense stands of live oak and blackjack oak, with an understory of short grasses. The geologic age of the sand dune has not been determined, but it can be inferred that it postdates establishment of the modern sea level during the last few thousand years of the Holocene.

Corpus Christi Bay, like the other embayments along the Central Texas coast, was created as the sea level rose in response to general global warming at the end of the Pleistocene, after ca. 18,000 years ago. By approximately 9,000 years ago, the sea level, which had been some 300 feet lower than present during the Pleistocene glacial maximum, had reached within a few meters of its present position and had inundated the incised valleys created by the subparallel rivers that flow into the Gulf of Mexico (e.g., Byrne 1975). The sea level approximated its modern position by ca. 3,000 B.P. Under stable sea level conditions, ongoing wave action and longshore drift caused mid-Holocene offshore shoals to coalesce to form the modern, continuous barrier island chain that is broken only by narrow tidal passes such as Aransas Pass at the northeast margin of Corpus Christi Bay. Simultaneously, river discharge into the bays dropped suspended sediments, leading to infilling and the creation of extensive shallows that provided the conditions for the emergence of grass beds and salt marshes.

The combination of bay bottom sedimentation and barrier island formation resulted in low turbidity, protected estuarine shallows that provide ideal conditions for high aquatic photosynthesis and extensive vegetated shallows that are crucial for supporting a rich food chain. The resultant extensive oyster reefs, other shellfish beds, and grass flats that provide ideal spawning areas for fish created a rich ecological milieu for human hunter-gatherer populations, so that after 3,000 B.P. large, thick, and extensive shell middens were deposited as prehistoric populations were drawn to the abundant aquatic food resources of the geologically modern coastline.

The riverine floodplain woodlands and upland prairie of the adjacent interior provided edible plant foods and mammalian game, including white-tailed deer and bison. The available evidence suggests that bison were present on the South Texas coastal prairies at various periods during the Holocene (Dillehay 1974) and were especially abundant during Late Prehistoric and Early Historic times (i.e., after ca. A.D. 1250–1300).

The Rockport Phase of the Central Coast Area
The Rockport phase is an archeological construct that represents the aboriginal Karankawan peoples of this section of the Texas coast. The linkage with the Karankawa culture is a confident one, given that (a) the archeological phase has essentially the same geographic distribution as the territories of the several known Early Historic Karankawan tribes (see Newcomb 1983 and Ricklis 1996); (b) the Rockport phase can be dated to the last few centuries of prehistory and into the Early Historic period (Ricklis 1995a, 1996); and (c) distinctive Rockport ware pottery has been found in abundance at 18th-century Spanish mission sites known to have been occupied by Karankawa groups, namely Rosario Mission at Goliad, Texas (Ricklis 2000) and Refugio Mission at Refugio, Texas (Perrtula 2002).
Moreover, Euroamerican artifacts of metal and glass have been found at non-mission Rockport phase sites (e.g., Campbell 1958), including site 41SP11, from which Corbin (1963) reported finding a possible Colonial period glass bead. Such findings confirm the contemporaneity of the Rockport phase with the period of early European exploration and colonization of the Texas coast and adjacent interior, when the Karankawas were observed and documented by French colonists (Newcomb 1983; Weddle 1987) and Spanish missionaries (see discussion in Ricklis 1996).

In sum, the extant information indicates that the McGloin Bluff site is a major shoreline (Group 1) site of the Rockport phase, and thus also is a historic property that represents occupation by the Karankawa people known to have been the Native American residents of the area at the time of first European contact.

Test Excavations

Site 41SP11 is a moderately large site that extends along the crest of a generally stabilized sand dune that runs parallel to the northern shoreline of Corpus Christi Bay, up to 100 m or more back from the present bay shoreline (see Figure 1). This dune, known locally as McGloin’s Bluff, presents an abrupt rise in topography, with a steep windward slope to the grass-covered beach that adjoins the bay shore and a more gradual and uneven slope on its leeward (northern) side. The top of the dune, on which the site is located, is a rather narrow (approximately 20–30 m wide) strip of land that is alternately fairly level and undulating. A sand quarry pit is located near the west end of the site, and numerous potsherds and other artifacts have been collected from the walls of this pit over the years. Near the eastern end of the site is a natural hollow or blowout, wherein our survey crew collected a handful of Rockport potsherds in spring 2004. The intervening dune surface is fairly heavily vegetated with short grass and clumps of small live oaks, small hackberry, and mesquite trees.

Test excavations consisted of two 2 x 2 m blocks. Block A was placed at the approximate location of one of our survey shovel tests that had produced a relative abundance of Rockport ware potsherds and two flakes of chert, plus several shells of oyster and lightning whelk. This location was marked by level ground covered by short grass, though dense clumps of trees were in close proximity. Due to high artifact recovery and the usefulness of such materials for evaluating site significance, the 2 x 2 m block was extended one meter westward to create a final block that measured 2 x 3 m. Excavation was generally terminated at the base of 10 cm Level 17, or 170 cm from the ground surface. However, in order to test for earlier, pre-Rockport material, a one-meter-square downward extension in the middle of the block was dug to the base of Level 20, or 200 cm below the ground surface. Block B was 40 m to the east along the crest of the dune. The eastern one-half of Block B was dug to 120 cm below the surface, while the western one-half was dug to 160 cm below surface.

The excavation technique consisted of skim-shoveling the unconsolidated sand matrix in thin (2–3 cm thick) increments using a flat-bladed shovel to remove materials in 10 cm arbitrary levels. This allowed for a controlled procedure in which in situ artifacts and/or features would be easily identified as the work progressed. All excavated sand matrix was screened through 1/4-inch mesh hardware cloth. Artifacts and other archeological materials (e.g., shell, faunal bones) were placed in Ziploc plastic bags and labeled according to excavation block, one-meter quadrant within the block, and 10 cm level. Thus, a given provenience might be Block A, NW Quadrant, Level 1 (0–10 cm).

Sediment Stratigraphy

Although the sedimentary matrix at 41SP11 is consistently a cumulic eolian sand deposit, it was possible to identify in the field a basic, grossly intact stratigraphy. In both excavation blocks, three strata were identified. Stratum 1 is a light grayish-brown fine sand, Stratum 2 is a slightly darker gray fine sand, and Stratum 3 is a light gray sand. In both units, Stratum 2 was visible in wall profiles as a discernibly darker-colored stratum; the darker color suggests a somewhat higher organic content that may be the result of human occupation at the site. A photograph of a wall profile in Block A is shown in Figure 2. The strata, along with depth ranges and colors for each of the two excavation blocks, are listed in Table 1.

Rodent disturbance of the deposits, probably by pocket gophers, judging by the size of the filled burrows (krotovinas), was abundantly in evidence. Old sand-filled krotovinas were visible in the excavation walls as circular-to-oval patches of sand that contrasted in color with the surrounding stratigraphic
matrix. In the field, attention was given to noting the colors of sand that filled the krotovinas, and it was documented that krotovinas visible in Strata 1 and 3 contained fill that was the same color as the sand in Stratum 2. Conversely, fill in krotovinas in Stratum 2 was of a color that matched Strata 1 and 3. This is expectable, insofar as a burrow found in, say, Stratum 2 that was filled with Stratum 2 sediment would most likely not be discernible; the color contrast between krotovina fill and stratum matrix is what renders the krotovinas visible. The notations of krotovina fill colors do, however, suggest that burrows were filled with sand that was vertically displaced by gophers as much as 110 cm. This is significant as it inferably accounts for the degree of vertical displacement of Rockport phase artifacts within the sand at the site, as discussed below. Although these artifacts were found throughout the excavations, they tended to be most abundant in Zone 2.

Artifacts
Rockport phase materials found during the test excavations (see Table 2) include 1,296 Rockport ware potsherds; 220 pieces of lithic debitage; five flaked lithic tools (two arrowpoints, a third possible arrowpoint, a perforator or drill, and a small unifacial end scraper; see Figure 3); 464 faunal bone fragments; 44 marine fish otoliths; and 248 marine shells (whole and fragmentary bivalves and gastropods). Given that all of the time-diagnostic artifacts (the potsherds and the arrowpoints) are typical of the Late Prehistoric Rockport phase, it can be assumed with reasonable confidence that the

| Table 1. Depth Ranges of Strata in Blocks A and B, Site 41SP11 |
|-------------------------|---------------------|--------------------------|--------------------------|--------------------------|
| Stratum | Depth Range | Sediment | Munsell Color | Inferred Origin |
| Block A |
1	0–30/40 cm	Fine sand	10YR5/2	Eolian deposition
2	30/40–90/100 cm	Fine sand	10YR5/1	Eolian with anthropogenic input
3	90/100–160/165 cm	Fine sand	10YR6/1	Eolian deposition
4	160/165 cm+	Fine sand	10YR6/2	Eolian deposition
Block B				
1	0–70/95 cm	Fine sand	10YR5/2	Eolian deposition
2	70/95–125/160 cm	Fine sand	10YR5/1	Eolian with anthropogenic input
3	125/160 cm+	Fine sand	2.5Y7/2	Eolian deposition
Table 2. Artifacts by 10 cm Levels in Blocks A and B, Site 41SP11

<table>
<thead>
<tr>
<th>Artifacts</th>
<th>Levels</th>
<th></th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Block A</td>
<td></td>
</tr>
<tr>
<td>Perdiz arrowpoints (prob.)</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Triangular arrowpoint</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Expanded-base drill</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unifacial end scraper</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Debitage</td>
<td>3</td>
<td>19</td>
<td>17</td>
<td>24</td>
<td>18</td>
<td>19</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Pumice fragment</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Potsherds</td>
<td>10</td>
<td>50</td>
<td>116</td>
<td>112</td>
<td>106</td>
<td>115</td>
<td>104</td>
<td>106</td>
<td>83</td>
<td>95</td>
<td>50</td>
<td>101</td>
<td>69</td>
<td>56</td>
<td>45</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Asphaultum pieces</td>
<td>3</td>
<td>3</td>
<td>27</td>
<td>16</td>
<td>11</td>
<td>24</td>
<td>14</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Burned clay nodules</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block B</td>
<td></td>
</tr>
<tr>
<td>Debitage</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Potsherds</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>13</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Asphaultum pieces</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Burned clay nodules</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

= unexcavated
faunal bone, fish otoliths, and shells represent food procurement during that same time period. As a whole, then, the materials collected support previous suggestions that 41SP11 is a single-component site of the Rockport phase.

Potsherds
Fragments of Rockport ware pottery (Figures 4 and 5) were by far the most abundant artifacts in the excavation blocks. The great majority (1,183, or 91 percent) of the 1,296 potsherds that were recovered came from Block A. Rim sherds, numbering only 37, account for only 2.85 percent of the total; neck, body, and basal sherds account for the remaining 97.15 percent of the sample. The low percentage of rim sherds probably reflects the fact that many vessel orifices were narrow and constricted, probably sometimes creating bottle-like shapes that are documented for Rockport ceramics (see Ricklis 1995b).

On the basis of an attribute analysis of the 37 rim sherds, the following characteristics of the 41SP11 prehistoric pottery can be summarized.

1. Paste characteristics. All of the vessels represented contained sand as an aplastic, as is typical of Rockport ware and other ceramics of the Texas coast. Twenty-eight of the rim sherds contained sparse sand grains (less than 5 percent of the clay body), while nine contained moderate (5–25 percent of the clay body) sand inclusions. Generally, it is believed that the sand was a natural inclusion in the clay that served as a tempering agent.

2. Firing characteristics. Most of the vessels in the 41SP11 excavated sample were fired in an oxidizing atmosphere, with the result that 32 (86.5 percent) of the rim sherds have light colors (orange, light brown, or buff). The fact that most of these (22, or 68.8 percent of the oxidized sherds) are orange to buff throughout the thickness of the sherd indicates that firings were complete and well controlled; the remaining 10 sherds have darker gray cores, indicating that oxidation during firing did not completely penetrate the vessel wall. Only five (13.5 percent) of the rim sherds were fired in a reducing atmosphere, with the result that sherd surfaces and cores are gray to black in color. The majority of the vessels have light-colored surfaces, doubtless an intended result of the 41SP11 potters, since this would provide a contrasting background for the black-asphaltum-painted decorations that were then commonly applied to the fired vessel.

3. Asphaltum surface treatment. A high percentage (89.2 percent) of the rim sherds bear painted decoration or coating of natural asphaltum. This black substance (see Figures 4 and 5) was commonly used to decorate or coat the surfaces of Rockport ware vessels, and this is a regionally unique technique and style that helps to readily distinguish Rockport pottery from the contemporaneous Late Prehistoric ceramic traditions of the inland Toyah horizon of southern Texas and the Goose Creek wares of the upper Texas coast (e.g., Suhm and Jelks 1962; Ricklis 1995b, 1996). Analysis at various sites shows that, generally, at least approximately 50 percent of vessels on Rockport phase sites had either painted decoration or coating.
of black asphaltum (Ricklis 1995b). Thus, the percentage of rim sherds with these attributes at 41SP11 is relatively high, at 33 (89.2 percent) of all rim sherds. The most common decorative element is a band of asphaltum painted around the lip of the vessel; this decoration is found on 28, or 75.6 percent, of the rim sherds. Seven (18.9 percent) of the rim sherds bear exterior asphaltum coating, while four (10.8 percent) have interior coating.

Another distinctive decorative motif in Rockport pottery is a series of parallel, squiggly, painted asphaltum lines running vertically on vessels; this motif has been used to define a distinctive pottery type, Rockport Black-on-Gray II (Ricklis 1995b, 1996). None of the rim sherds exhibit this design element, but it is present on 15 non-rim body or neck sherds (Figure 5). Generally, the vertical squiggles are spaced several centimeters apart, so many undecorated sherds may actually pertain to vessels with this kind of decoration. Two of the body sherds with asphaltum squiggly lines bear a thin white slip on the exterior, under the painted design. Thus they represent a distinctive, black-on-white variation of the black-painted theme that has been more abundantly documented at other Rockport phase sites (e.g., sites 41CL2 [Weinstein 2002] and 41AS92 [Ricklis 2000]), as well as among the sample of Karankawa pottery from Rosario Mission at Goliad, Texas (Ricklis 2000).

4. Vessel surface treatment (non-asphaltum). All but five of the rim sherds have smooth surfaces; in one instance the surface has been burnished to a dull polish. The other five sherds exhibit surface scoring, done when the clay was still wet with the edge of a ribbed bivalve shell such as a bay scallop or a cockle. This is a common surface treatment in Rockport pottery and probably represents a ready technique for roughly smoothing vessel surfaces after construction of the pot with clay coils.

5. Rim profiles. Generally, Rockport vessels were of a limited range of shapes. Bowls, jars, and narrow-neck ollas, sometimes with bottle-like neck elongations, were the common forms (Ricklis 1995b; 2000). Bowls and some jars had straight rims, while jars and ollas often had outflaring or everted rims. Jars occasionally had inverted or insloping rims that formed the perimeters of small openings or orifices. Among the rim sherds recovered in the 41SP11 testing, 14 (37.8 percent) are straight (bowls, jars); 17 (45.9 percent) are everted (jars, ollas); and 6 (16.2 percent) are inverted (small-mouth jars).

6. Vessel lip forms. Some variability is observable in the shape of lips on vessel rims. Three basic lip forms are identifiable in Rockport pottery: pointed lips, rounded lips, and flat lips. In the rim sherd sample from 41SP11, 22 lips are rounded (59.5 percent), 12 are flat (32.4 percent), and three (8.1 percent) are pointed. Any possible significance of these attributes would be best viewed in relation to other sites to determine if they have either temporal or geographical significance.

These several observations clearly demonstrate that the Late Prehistoric ceramic material from 41SP11 is quite typical of the Rockport phase. The abundance of asphaltum coating and decoration on oxidized-fired, sandy-paste vessels is especially diagnostic of this ceramic tradition. At the same time it should be noted that some attributes common in the Rockport ceramic assemblage are not represented. This includes an absence of incised decoration on any of the rim sherds or neck sherds (Rockport Incised), as well as an absence of notches on vessel lips (Rockport Crenelated). These absences may simply reflect the small size of the rim sherd sample; a larger sample would be needed to draw confident conclusions on this matter.

Faunal Remains: Bone and Shell
Bone preservation at 41SP11 was good, though the faunal bone specimens were, in general, highly fragmented. A total of 464 fragments of animal bone was recovered, mostly from Block A (445, or 95.9 percent). An inventory of the numbers of specimens according to identifiable taxa is presented in Table 3. The taxa represented are rather typical of a Rockport phase Group 1 shoreline site, insofar as fish remains are relatively abundant and terrestrial species, especially white-tailed deer (Odocoileus virginianus) are also present in significant quantities (cf. Ricklis 1996; Weinstein 2002). Species-diagnostic otoliths represent fish species commonly found on Group 1 sites, namely, black drum, redfish, speckled sea trout, Atlantic croaker, and catfish. Clearly, fish were an important economic resource at 41SP11, though the overall faunal sample is too small for any firm conclusions about the specific ranking or relative importance of various resources at the site.

It is significant that two thick (>7 mm) cortical long-bone fragments are bison-sized, and these probably represent some evidence of bison hunting. Bison bones have been found in some abundance at inland riverine Rockport phase sites categorized as Group 2 sites (Ricklis 1988, 1992, 1996), where deer bones also tend to be abundant and fish remains are relatively scarce. However, bison bone is found in limited amounts at shoreline sites (Ricklis 1996), and it is likely that bison hunting took place inland on the coastal prairies and butchered elements of bison carcasses were brought back to shoreline fishing camps, as was probably the case at 41SP11.

Estuarine shellfish species represented by recovered shells include oyster (Crassostrea virginica), bay scallop (Argopecten irradians), sunray venus (Macrocystis nimboidea), and lightning whelk (Busycon peruvianum). All of these are moderate-to-high salinity species that can be procured in Corpus Christi Bay and have been found in abundance at Rockport phase sites on nearby Ingleside Cove (sites 41SP120 and 41SP43; see Story 1968; Ricklis 1996). As is the case with other classes of debris, shell specimens were far more abun-
Table 3. Identified Faunal Bone by 10 cm Level in Blocks A and B, Site 41SP11

<table>
<thead>
<tr>
<th>Faunal Bone</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17</td>
</tr>
<tr>
<td>Block A</td>
<td></td>
</tr>
<tr>
<td>Deer (Odocoileus virginianus)</td>
<td></td>
</tr>
<tr>
<td>Deer-sized long-bone fragments</td>
<td>3 3 4 3 4 1 1</td>
</tr>
<tr>
<td>Humerus fragment</td>
<td>1</td>
</tr>
<tr>
<td>Distal tibia fragment</td>
<td></td>
</tr>
<tr>
<td>Astragalus</td>
<td>1</td>
</tr>
<tr>
<td>Phalange</td>
<td>1</td>
</tr>
<tr>
<td>Large mammal</td>
<td></td>
</tr>
<tr>
<td>Bison-sized long-bone fragments</td>
<td>1 1</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
</tr>
<tr>
<td>Otoliths</td>
<td></td>
</tr>
<tr>
<td>Black drum (Pogonias cromis)</td>
<td>1 2 3 2 3 1 2 2 2</td>
</tr>
<tr>
<td>Redfish (Sciaenops ocellata)</td>
<td>1 1 4 1</td>
</tr>
<tr>
<td>Croaker (Micropogon undulatus)</td>
<td>2 1</td>
</tr>
<tr>
<td>Sea trout (Cynoscion nebulosus)</td>
<td>2 2 1 1</td>
</tr>
<tr>
<td>Sea catfish (Auris felis)</td>
<td>1 1 4 1</td>
</tr>
<tr>
<td>Vertebrae</td>
<td>2 2 1 1 1</td>
</tr>
<tr>
<td>Vertebral spine elements</td>
<td>1 1 2 3 3 1</td>
</tr>
<tr>
<td>Gill plate</td>
<td>1</td>
</tr>
<tr>
<td>Gar scale</td>
<td>1 1</td>
</tr>
<tr>
<td>Gar vertebrae</td>
<td>1 1 2 1</td>
</tr>
<tr>
<td>Turtle carapace fragments</td>
<td>1</td>
</tr>
<tr>
<td>Small unidentified bone fragments</td>
<td>5 13 71 54 8 45 74 39 30 18 3 4 13 9 1 1 1</td>
</tr>
<tr>
<td>Unidentified vertebra fragment</td>
<td>1</td>
</tr>
<tr>
<td>Block B</td>
<td></td>
</tr>
<tr>
<td>Deer (Odocoileus virginianus)</td>
<td></td>
</tr>
<tr>
<td>Cranial fragment</td>
<td>1</td>
</tr>
<tr>
<td>Medium-sized mammal</td>
<td></td>
</tr>
<tr>
<td>Vertebral fragment</td>
<td>1</td>
</tr>
<tr>
<td>Turtle</td>
<td></td>
</tr>
<tr>
<td>Vertebra</td>
<td>1</td>
</tr>
<tr>
<td>Carapace fragment</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
</tr>
<tr>
<td>Otoliths</td>
<td></td>
</tr>
<tr>
<td>Redfish (Sciaenops ocellata)</td>
<td>1</td>
</tr>
<tr>
<td>Sea trout (Cynoscion nebulosus)</td>
<td>1</td>
</tr>
<tr>
<td>Small unidentified bone fragments</td>
<td>2 2 1 2 8</td>
</tr>
</tbody>
</table>

= unexcavated
dant in Block A (235 specimens, or 94.8 percent) than in Block B (13, or 5.2 percent).

While it is apparent that shellfish were gathered during the Rockport phase at 41SP11, presumably as a food resource, it is important to note that shells were found only sporadically scattered throughout the excavations. Compared to the profusions of shell found in Archaic shell middens along the Central Texas coast, shell has low representation at 41SP11, and the site certainly does not have the character of a shell midden deposit. Indeed, the available evidence suggests that shellfish gathering was far less important during the Rockport phase than it had been during the earlier Late Archaic period. An intensification of fishing (Ricklis and Blum 1997), perhaps combined with the influx of bison onto the coastal prairies during Late Prehistoric times, may have rendered shellfish gathering unnecessary in terms of caloric and protein dietary input. A marked reduction in shellfish deposition at sites during the Rockport phase has been documented at 41SP120 on nearby Ingleside Cove (Ricklis 1996).

Radiocarbon Date
A radiocarbon assay was run on a large whelk shell from Level 5 in Block A. After correction for the 13C fraction, the resulting age is 550 +/− 60 years before present (B.P.). For reasons explained in detail elsewhere (Ricklis 1999), an atmospheric calibration is believed to be appropriate for shallow-water estuarine shells from sites in the region. Based on the calibration program provided by the University of Köln, this result calibrates at 1 sigma to 626–533 B.P., or A.D. 1324–1416. This date falls well within the range estimated for the Rockport phase.

Conclusions
On the basis of the data and discussion presented above, several basic conclusions can be made concerning 41SP11, as follows:

1. The evidence obtained during our testing supports the previous inference that 41SP11 is a single-component manifestation of the Rockport phase. All prehistoric artifacts recovered during our testing can be assigned to the Rockport phase. The chert arrowpoints, the end scraper, and the expanded-base drill are all diagnostic of this period on the Central Texas coast, and the numerous potsherds all pertain to the Rockport ware that is especially diagnostic of this phase. No artifacts were found that can be ascribed to earlier Archaic or later Colonial period occupation of the site, and the single radiocarbon date obtained on whelk shell provides a Late Prehistoric date range of A.D. 1324–1416, in line with expectations for the Rockport phase.

2. The faunal remains from the site are in accord with expectations for a Group 1 Rockport phase site. The abundance of fish remains reflects an important emphasis on fishing, while the presence of deer and probable bison bone shows that this was significantly augmented by hunting.

3. The dramatic differences in artifact and faunal-remain densities between Blocks A and B show that there is clear horizontal variability in debris density across the site, suggesting that 41SP11 may hold the potential for elucidating how living and activity space was organized during the Rockport phase.

References
1976 Environmental Geologic Atlas of the Texas Coast: Corpus Christi Area. Bureau of Economic Geology, University of Texas at Austin.

Byrne, J.R.
1975 Holocene Depositional History of Lavaca Bay, Central Texas Coast. Unpublished Ph.D. dissertation, Department of Geology, University of Texas at Austin.

Campbell, T.N.

Corbin, J.E.

Dillehay, T.D.

Newcomb, W.W., Jr.

Perttula, T.K.

Ricklis, R.A.

The McNeill Ranch site (41VT141) has yielded evidence of continuous occupation from late Paleoindian to Late Prehistoric times. A small crew of Texas Historical Commission (THC) archeological stewards and other experienced, dedicated volunteers rescued the site from certain destruction by commercial soil removal from the property. They took responsibility for the massive salvage operation and turned it into a model for the dissemination of raw archeological data for immediate study, future research, and public display.

Background
The site was discovered in spring 2003. After they were informed of its existence and imperiled state, landowners Mr. and Mrs. John McNeill immediately stopped the mining operations and agreed the site was too important to simply leave to the elements. Victoria County resident and THC steward Jimmy Bluhm obtained permission from the McNeills to start salvage operations at the site.

Bluhm and Bill Birmingham, Victoria County resident and THC steward, assembled the 41VT141 crew, which included stewards Pat Braun (Aransas County), Nelson Marek (Calhoun County), and Gary McKee (Fayette County). Jud Austin, Frank Condron, Helen Shook, and Ed Vogt, who had all been part of the Fort St. Louis Archeological Project, joined the effort, along with Erin Atkins, Lynn Calhoun, Bobbie Guinn, Ben McReynolds, artist Richard McReynolds, Dr. Jennifer Rice, Alex Smith, and Matt Taylor.

The plans for 41VT141 were multidimensional. The first goal was to prevent any further destruction, and John McNeill immediately took care of that problem by halting the
soil removal activities. Other goals were to determine the extent of the site, remove the exposed burials, and conduct a controlled excavation in an undisturbed area. Another important goal was to establish a mechanism whereby the knowledge gained from this work could be shared.

Site 41VT141 covers more than 16 acres of an active cattle ranch in north Victoria County. Jeff Durst, THC regional archeologist for Regions 5 and 6, assisted with the initial survey and layout of the site, and by early August 2003 the first excavations were started. The surveys identified Burial Areas 1 and 2, Habitation Areas 1–5, the Anaqua Mott Habitation Area, and the Paleo Area, which is a mixture of disturbed and intact surfaces. Surface artifacts dating back to late Paleoindian times were found in the broad general area initially identified as “paleo.” The disturbed surfaces in the habitation areas produced abundant debitage and more recent points.

Excavations started with Burial Areas 1 and 2 and Habitation Areas 4 and 5 (Figure 1). Salvage work in Burial Areas 1 and 2 revealed six human burials. Accelerated mass spectrometry (AMS) dating on two of these burials produced calibrated dates of 2,020 ± 40 B.P. and 1,730 ± 40 B.P.

Habitation Area 4, an undisturbed area, was mapped into 1 x 1 m units. Six units in a 3 x 2 m pattern were excavated in 10 cm levels and taken down 26 levels (Figure 2). The recovered artifacts confirm continuous occupation from late Paleoindian to Late Prehistoric periods, covering more than 8,500 years. Habitation Area 4 produced more than 400 artifacts that were individually identified, two hearths (with more than 200 fire-cracked hearthstones), 56,000 g of debitage, 67,600 g of fire-cracked rock (without hearthstones), sandstone, pebbles, aboriginal pottery, shell, and non-human bone.

Fifteen excavated units in Paleo Area 1 produced 15 Clear Fork bifaces, as well as Angostura, Golondrina, and St. Mary’s Hall points, clearly placing that portion of the site in the late Paleoindian period (ca. 8,500–6,000 B.C.) to Early Archaic period.

North of Paleo Area 1, but apparently not associated with it, exposed human bones were found in an area with signs of bioturbation. To date, two burials have been removed from this area, which was named Burial Area 3. One, partially articulated, provided a calibrated AMS date of 3,650 ± 40 B.P.

Educational Uses of Site 41VT141
The site itself became a classroom. Area schools and Boy and Girl Scout troops signed up for field trips conducted by Bluhm, with atlatl demonstrations and instruction by Birmingham and other hands-on activities supervised by the crew. All the organizations have requested return visits. Teacher workshops
were held at the site, for which participants received in-service credit.

Dr. Jennifer Rice, osteologist, directed the removal and study of the burials and also joined the ongoing work of the regular crew. She obtained a Texas Archeological Society (TAS) Donor’s Fund grant to date one burial from Burial Area 3.

Matthew Taylor, a graduate student at the State University of New York at Albany, assisted with burial removal and received a TAS Donor’s Fund grant to date burials from Burial Areas 1 and 2. He is incorporating information from the McNeill Ranch site into his doctoral dissertation.

Texas A & M University graduate student Michael Avalausit is working with lab data from the excavations; these data will be a major contribution to his master’s thesis, to be titled “Geoarchaeological Investigation at the McNeill Site (41VT141), Victoria County, Texas.” Avalausit was also given access to the site to conduct sampling, testing, and measurement of the exposed excavations.
Erin Atkins, University of Texas at Austin, is incorporating her pollen and charcoal research from the site into her master’s thesis.

After visiting the site and reviewing the results of the excavations, Dr. Michael Bever, Department of Anthropology, University of Texas at Austin, has organized a field school there for summer 2006.

From its inception, the Museum of the Coastal Bend on the campus of Victoria College has supported the 41VT141 project. Museum Director Annette Musgrave made space available in the museum for an archeological lab open to the public. Jud Austin and Helen Shook serve as codirectors of the lab staffed by project personnel. In addition to standard lab processing and recording, they perform all related curatorial activities required by the museum.

The Museum of the Coastal Bend recently featured an exhibit, “Early Peoples of the Texas Coastal Bend,” for which a timeline (Figure 3) created by Bill Birmingham and Dr. Robert Shook served as the primary reference. The exhibit included artifacts from site 41VT141 and other museum collections. Interestingly, the profiles of Area 4 artifacts fit directly into the periods set forth in this timeline.

Conclusions

The value of the work of the THC archeological stewards and other volunteers is quite evident from this project. Lab work is in its final stages of completion, after which this article will be followed by a more detailed project report. Results from the two-and-a-half years’ work at site 41VT141 will be made available at the Museum of the Coastal Bend, the official repository for the artifacts and associated databases. For access to the collections and records, researchers should contact Museum Director Annette Musgrave.

SAA Book Award Goes to THC’s Bruseth and Turner

The largest organization of archeologists in the U.S., the Society for American Archaeology (SAA), selected From a Watery Grave: The Discovery and Excavation of La Salle’s Shipwreck, La Belle, by James E. Bruseth and Toni S. Turner, as the recipient of this year’s Book Award for an Outstanding Contribution to the Public Understanding of Archaeology.

Dr. Bruseth, who directed the excavation of the Belle, is also the director of the Texas Historical Commission (THC) Archeology Division. Turner, the THC’s development officer, assisted in many aspects of the shipwreck recovery.

From a Watery Grave, published in 2005 by Texas A&M University Press, recounts two stories. The first is the doomed 1684–87 expedition of famed French explorer Robert Cavelier, Sieur de La Salle, who landed at Matagorda Bay in what is now Texas after failing to locate the mouth of the Mississippi River, his intended destination. The second story concerns the THC’s discovery and excavation of one of La Salle’s four ships 300 years later.

The SAA award in the “popular” book category is not bestowed every year, but only when a work is deemed deserving. From a Watery Grave “was selected unanimously by the committee, which doesn’t happen often,” said Dr. Guy Gibbon, chair of the SAA Book Award Committee. In addition to the significance of the research, the quality of the book’s narrative and illustrations figured in the committee’s decision. Gibbon praised its “explanations of often complex processes that most people will be able to understand.”

From a Watery Grave, which has also received the Texas Historical Foundation’s Deolece Parmelee Research Award and the Presidio La Bahia Award from the Sons of the Republic of Texas, was intended for both the general public and professional archeologists, Bruseth said. While technical facts are described in lay terms, the latest research and scientific interpretations are included as well.
Jelks Receives Tunnell Lifetime Achievement Award

by Pat Mercado-Allinger

In recognition of his significant contributions to Texas archeology, Dr. Edward B. Jelks of Normal, Illinois, was named the 2005 recipient of the Texas Historical Commission’s Curtis D. Tunnell Lifetime Achievement Award in Archeology.

Jelks is widely regarded as a pioneer in North American historical archeology, directing investigations at a broad range of sites: Spanish, English, and French colonial; historic Native American; early Euroamerican; military (including the Yorktown Battlefield in Virginia and Forts Lancaster and Leaton in West Texas); urban; and industrial.

The “nearly” native Texan moved with his family to the state as a young boy and earned his bachelor’s, master’s, and doctoral degrees from the University of Texas at Austin. His earliest professional work in archeology was with the Texas Division of the River Basin Surveys (a joint project of the National Park Service and Smithsonian Institution) in the 1950s. It was during this time that Jelks hired Curtis Tunnell, fresh out of the U.S. Navy, for his first professional job — an interesting twist, as the Lifetime Achievement Award is named for Tunnell.

In 1954 the Texas Archeological Society (TAS) published “An Introductory Handbook of Texas Archeology” by Dee Ann Suhm, Alex D. Krieger, and Edward B. Jelks. This benchmark work, which took up almost the entire issue of the *Bulletin of the Texas Archeological Society*, described and categorized prehistoric cultural manifestations by region. It remains an indispensable reference in the libraries of Texas archeologists even today, 50 years later.

Jelks went on to establish the Texas Archeological Salvage Project at the University of Texas at Austin in 1958, and was instrumental in the creation of a permanent research repository — now known as the Texas Archeological Research Laboratory (TARL) — to house the vast array of archeological records and collections derived from sites across the state.

The author and co-author of numerous articles and reports, Jelks published the results of investigations in diverse regions of the state: central (Jelks 1951; Miller and Jelks 1952; Jelks 1953, 1962; Ray and Jelks 1964), eastern (Jelks and Tunnell 1959; Duffield and Jelks 1961; Jelks 1965a, 1965b; McClurkan, Jelks, and Jensen 1980), and western (Hays and Jelks 1966). He also produced works relating to Caddo archeology (Jelks 1961) and the archeology of the historic Wichita tribes (Bell, Jelks, and Newcomb 1967).

Jelks maintained strong and long-lasting ties with the TAS through the years. He was elected president in 1959 and in 1962 directed the first TAS field school, held at the Gilbert site, which yielded artifacts of 18th-century Wichita (Norteño focus) and French origin. The results of this field school were reported in a series of articles in the *Bulletin of the Texas Archeological Society*, edited by Jelks in 1967, the same year he was named a TAS Fellow, the society’s highest honor.

In 1965 Jelks departed Austin to teach at Southern Methodist University and in 1968 joined the faculty of Illinois State University. Though officially retired from Illinois State since 1983, the distinguished Professor Emeritus has nevertheless continued to attend conferences, conduct fieldwork, and write scholarly papers. He and his wife Juliet (“Judy”) edited the *Historical Dictionary of North American Archaeology* (Jelks and Jelks 1988), a volume the *Library Journal* selected as a Best Reference. And to this day, Ed Jelks is known for his insightful comments in TAS listserv discussions. If this is a “retirement,” it is an admirably productive one.

References

Bell, Robert E., Edward B. Jelks, and W.W. Newcomb

1967 *A Pilot Study of Wichita Indian Archeology and Ethnography.* Final report for Grant GS-964, National Science Foundation, Austin.

Duffield, Lathel F., and Edward B. Jelks

1961 *The Pearson Site: A Historic Indian Site at Iron Bridge Reservoir, Rains County, Texas.* Archaeology Series 4, Department of Anthropology, University of Texas at Austin.

Hays, T.R., and Edward B. Jelks

1966 *Archaeological Exploration at Fort Lancaster, 1966.* Texas State Building Commission, Austin.

Jelks, Edward B.

An Anomaly II
Ready for Duty

The new Texas Historical Commission (THC) research vessel Anomaly II is scheduled to be in Galveston for its official welcome at the THC commission meeting and annual historic preservation conference in April.

SeaArk Marine of Monticello, Arkansas, which custom built the Anomaly II, took the photograph at right before the boat was fitted with interior cabin fixtures, outboard engines, and glass in the cabin windows. The large open hatch at the stern of the vessel will house a generator to provide power for electronic survey equipment.

The gap in the side of the hull, shown in the photograph with stairs at the threshold, is a “dive door.” In general, divers have no problem entering the water — basically, they just fall in — but getting out can be challenging. The new vessel’s dive door and ladder will ease this problem considerably. When not in use, the gap will be filled with a special aluminum insert.

The extension of the hull at the stern is a mounting platform for the twin outboard engines. This simple extension frees up room in the cockpit for crew operations. The boat’s cabin is air conditioned and completely enclosed, providing a dry work environment for the crew and the electronic survey equipment.

New THC boat during the final stage of construction.

New Marine Archeology Brochure Available

The Texas Historical Commission’s new educational brochure about marine archeology in Texas is now available from the Archeology Division.

Free. To request the brochure, call 512/463-6090, email donna.mccarver@thc.state.tx.us, or fax 512/463-8927.
Texas Archeology Month: Another Broken Record

Sounding like a broken record is usually thought to be a bad thing. But not in this case. Each year for at least the last five, we have announced that the most recent Texas Archeology Month was the most successful yet. After tallying the figures, there is no other way to say it: Texas Archeology Month 2005 was the most successful yet, by any standard we are able to quantify.

Eighty-five events were held in October 2005, including the largest number of fairs and other events that incorporated hands-on archeology activities (27 — an increase of seven from 2004). Reported attendance was also the highest of any year, almost 20,000 at the 38 events for which we have attendance counts.

Pointers for 2006

Can this upward trend continue? All indications are the answer is yes. Veteran event sponsors have perfected their systems over the years and shared the secrets of their hard-won organizational expertise with us. When asked for suggestions to pass on to others, especially to those considering sponsorship of an archeology fair, this is what they say:

- Look into partnering with another event or arrange to be part of a larger event, such as a heritage festival. You will draw more people and have access to additional resources and volunteers. Instead of trying to compete with other events, work together as a team, cross-promoting both events.
- Start planning early. Right now is the ideal time to begin. Line up your presenters (flintknappers, for example, and speakers, craftspeople, Native American storytellers, and Buffalo Soldier interpreters). These people are in great demand, especially during the festival-heavy autumn months.
- Get in touch with area schools, teachers, and Boy and Girl Scout troops. Educators may be able to schedule a unit to coincide with your event, which could become a field trip or other school activity. Scouts working for archeology merit badges may also want to attend.
- Publicity, publicity, publicity — like location, it’s everything. Distribute flyers and Texas Archeology Month Calendar of Events booklets to schools, grocery stores, libraries, and anywhere people gather. Submit a press release to local media outlets, both newspaper and broadcast, about two weeks ahead of time. Include at least one photograph or note that “images are available upon request.” The photo(s) might show activities at a previous event or, if that isn’t possible, archeological artifacts from your area. Contact us for a sample press release you can adapt for your own needs.

If you think you might want to organize an archeology fair or similar event, request a copy of How to Plan and Manage an Archeology Fair, which contains easy-to-follow instructions for hands-on activities. Financial assistance for fairs is available in the form of Texas Preservation Trust Fund matching grants (see announcement on page 24).

Fairs and festivals are not the only kinds of events that make up a rewarding Archeology Month. Small, interesting, happenings like lectures, tours of archeological sites, and local exhibits add flavor to the mix of programs. No matter what variety of event you put on, please let us know about it. An event form is included at the back of this publication.

—Molly Gardner

Contact information. For general information about Texas Archeology Month and Texas Preservation Trust Fund grants: Patricia Mercado-Allinger, 512/463-8882, pat.mercado-allinger@thc.state.tx.us. For a sample press release or information about listing in the archeology month Calendar of Events booklet: Molly Gardner, 512/463-9505, molly.gardner@thc.state.tx.us. To order printed materials: Donna McCarver, 512/463-6090, donna.mccarver@thc.state.tx.us.

Texas Archeology Month is sponsored by the Texas Historical Commission, the Texas Archeological Society, and the Council of Texas Archeologists.

Fourth-graders with Charley Jennings at the hot-rock cooking station, Guadalupe-Blanco River Authority Archeology Fair, Seguin.
Texas Preservation Trust Fund Grants Available for TAM Archeology Fairs

The Texas Historical Commission is accepting applications for Texas Preservation Trust Fund/Texas Archeology Month grants for events held during October 2006. Events may be either “stand-alone” archeology fairs or archeology-fair components of larger events.

To obtain an application, call 512/463-6096, fax 512/463-8927, visit www.thc.state.tx.us, or write Texas Historical Commission, Archeology Division, P.O. Box 12276, Austin, TX 78711-2276.

The deadline for receipt of applications is 5 p.m. on Monday, May 15, 2006.

Archeological Projects Receive FY 2006 TPTF Grants

The Texas Historical Commission (THC) recently awarded Texas Preservation Trust Fund grants totaling approximately $405,000 to 22 preservation projects. These projects were selected from the 65 applications submitted for fiscal year 2006. Among this year’s grant recipients are the following archeological education and planning projects:

Education

- $25,000 to Texas Beyond History/UT-Austin, Texas Archaeological Research Laboratory, for the development of the “Prehistoric Trans-Pecos People” virtual exhibits, the third component of the “Prehistoric Texas: An Illustrated Chronicle of Ancient Peoples and their Lifeways” initiative.

- $20,000 to National Park Service/Alibates Flint Quarries National Monument for the production of an orientation film for visitors to the only public national monument in Texas.

- $10,000 was set aside for use as “mini-grants” in support of Texas Archeology Month fairs to be held in October 2006. Consult the THC web site (www.thc.state.tx.us) for application information.

Planning

- $30,000 to the Center for Archaeological Research/UT-San Antonio for the rehabilitation and reinventory of the San Antonio Plaza de Armas archeological collections. These collections derive from multiple projects conducted at the Main and Military Plaza Historic District and the U.S. San Antonio Arsenal District sites.

- $20,000 to the Center for Big Bend Studies/Sul Ross State University for the stabilization and testing at the Millington State Archeological Landmark (41PS14) in Presidio County. The site contains the remains of occupations tentatively dated to the La Junta (ca. A.D. 1200–1450), Concepcion (A.D. 1450–1700), and Conchos (A.D. 1700–1800) phases, and may be the location of the Spanish Mission San Cristobal.

- $12,000 to Texas Parks and Wildlife Department for the continuation of the agency’s Phase 2 Archeological Collections Management Project. This phase of work is the repackaging of artifacts in archival boxes and bags, confirmation of lot numbers, and undertaking basic inventories of collections.

The Texas Legislature created the Texas Preservation Trust Fund in 1989 as an interest-earning pool of public and private funds. Designated gifts and earned interest are distributed as matching funds. For more information or to apply for a fiscal year 2007 grant, contact Lisa Harvell at 512/463-6094 or visit the THC web site, www.thc.state.tx.us.
The Texas Historical Commission (THC) made history at the 2005 Texas Archeological Society (TAS) annual conference, held in Austin the last weekend of October 2005. For the first time, the meeting included a symposium on the THC’s Texas Archeological Stewardship Network (TASN). The meeting was a fitting venue for the session, as many stewards have gained valuable training and experience at TAS field schools and workshops.

Called “Texas Archeological Stewardship Network: On the Front Lines and Behind the Scenes,” the symposium featured an overview of the program and examples of the work the men and women of the TASN perform. The following list of presentations (in order of appearance) demonstrates the range of topics and regional activities discussed. Unless otherwise noted, each presenter is a member of the TASN.

The C.K. Chandler Award

Acknowledges Site Recording by Avocationals

The identification and documentation of archeological sites forms the basis for further actions, from field investigations to protective measures. With the majority of Texas land in private ownership, a vast amount of our archeological past remains unknown.

Texas avocational archeologists have a long history of site reporting and, fortunately, continue to record many sites. To acknowledge and encourage these contributions, the board of the Texas Archeological Society (TAS) recently approved the creation of a special citation to be known as the C.K. Chandler Award. The late C.K. Chandler was a Texas Historical Commission archeological steward and an avid site recorder.

Staff of the Texas Archeological Research Laboratory, University of Texas at Austin, will compile information about site recording by avocationals, and the TAS will present the award to the avocational member who records the most sites in a one-year period.

Prewitt Honored for Antiquities Advisory Board Service

Elton Prewitt received a Certificate of Appreciation from the Texas Historical Commission (THC) in recognition of 10 years of exemplary service as a member of the commission’s Antiquities Advisory Board. Prewitt served from October 1995 to October 2005. Dr. Eileen Johnson, THC commissioner and chair of the Antiquities Advisory Board, presented the certificate at the January 2006 board meeting in Fredericksburg. Ron Ralph, Texas Archeological Society president, will fill the board vacancy created by Prewitt’s departure.

Sharing Accomplishments:
Texas Archeological Stewardship Network Symposium

by Pat Mercado-Allinger

The Texas Historical Commission (THC) made history at the 2005 Texas Archeological Society (TAS) annual conference, held in Austin the last weekend of October 2005. For the first time, the meeting included a symposium on the THC’s Texas Archeological Stewardship Network (TASN). The meeting was a fitting venue for the session, as many stewards have gained valuable training and experience at TAS field schools and workshops.

Called “Texas Archeological Stewardship Network: On the Front Lines and Behind the Scenes,” the symposium featured an overview of the program and examples of the work the men and women of the TASN perform. The following list of presentations (in order of appearance) demonstrates the range of topics and regional activities discussed. Unless otherwise noted, each presenter is a member of the TASN.

- The Texas Archeological Stewardship Network: A Unique and Productive Partnership Between Avocational and Professional Archeologists, by Patricia A. Mercado-Allinger (State Archeologist) and Bryan E. Jameson

Prewitt and Commissioner Johnson.
The John A. Hedrick Site
Fort Bliss Military Reservation Honors Past Steward

by Pat Mercado-Allinger

Situated in southern New Mexico within the confines of the Fort Bliss Military Reservation, a multicomponent prehistoric site (LA 91220) now bears the name “John A. Hedrick site.” It is a large site, containing numerous buried Mesilla phase (ca. A.D. 200–1100) pithouse features and sheet middens.

The Madera Quemada Pueblo, a 13-room structure affiliated with the El Paso phase (ca. A.D. 1200–1450) is another important component of the site. Madera Quemada “is one of the most preserved pueblos that have been found in the Jornada Region in the last 20 years,” according to Brian Knight, senior archeologist with the Directorate of Environment-Conservation Division at Fort Bliss. Knight said the site was named to recognize Hedrick’s work for many years as Fort Bliss curator.

Hedrick — “Jack” to his friends and colleagues — was a founding member of the Texas Archeological Stewardship Network, serving as a volunteer steward from 1984 to 1998. His stewardship work ran the gamut, including site recording and monitoring, documentation of artifact collections, conferring with public officials about archeological issues, and even mentoring area youth interested in archeology.

The late steward’s passion for archeology was ignited at an early age, leading him to join the El Paso Archaeological Society as a teenager and the Archaeological Society of New Mexico and Texas Archeological Society (TAS) in his 20s. In the following decades, he became a dedicated and active member of each organization. Even before his retirement from the El Paso Electric Company, he was a regular fixture at TAS field schools, frequently serving as lab director or crew chief.

Hedrick became widely recognized for his familiarity with the cultural resources of the Trans-Pecos region, knowledge gained from coursework at the University of Texas at El Paso and years of fieldwork and lab work in his free time. He reported the results of his research in several published articles.

On Oct. 2, 1998, at the age of 60, Hedrick died in Van Horn after a day spent in the field with Bob Mallouf, director of the Center for Big Bend Studies, and a group of his students from Sul Ross State University.

The TAS named Hedrick a TAS Fellow in 1998 in honor of his many contributions to the TAS and Texas archeology. The award, conferred posthumously, was accepted by Carrol Hedrick, his wife and partner in all things archeological.

Hedrick was an exemplary avocational archeologist. We applaud the Directorate of Environment-Conservation Division at Fort Bliss for naming such a significant site in his memory. Recent excavations at the Madera Quemada Pueblo have yielded a tremendous amount of data, currently undergoing analysis, which promises to shed new light on the prehistory of the region.

The site’s name is a fitting tribute to Jack Hedrick, a friend and colleague who contributed so much in such a short time.
Aerial photo of the John A. Hedrick site, showing the Madera Quemada Pueblo.

Jack Hedrick at the 1977 TAS field school held at the Sabina Mountain No. 2 site.
Regional Archeologists’ Reports

Trans-Pecos Region

Archeological steward Claude Hudspeth has had an extremely busy last few months. He gave presentations to the Concho Valley Archeological Society and the Crockett County Museum Association and attended the Texas Archeological Society (TAS) board meeting in Georgetown.

In January he surveyed the Millington site in Presidio with the Center for Big Bend Studies and Andy Cloud, and also recorded the Howard’s Well Massacre site in Crockett County with Texas Archeological Research Laboratory staff. Later that month, Hudspeth located the remains of a historic stage station 20 miles south of Ozona and flagged it to prevent damage from seismograph operations.

Hudspeth surveyed the Dobbs Ranch on the Nueces River with Dan Potter and other stewards in February. In March he and Regional Archeologist Debra Beene visited several recorded sites on Hudspeth Ranch in Val Verde.
County to prepare for State Archeological Landmark (SAL) designation and inspected several already-designated SALs by boat on the Pecos and Rio Grande rivers.

Hudspeth and Beene also met with Joe Labadie, Cultural Resources Program Manager, Amistad National Recreation Area. The park is interested in working with Hudspeth and the Texas Historical Commission (THC) in developing some type of water-based stewardship program at Lake Amistad. This meeting was a starting point for discussions about how best to implement such a program; we have yet to work out the details.

Mountain/Pecos & Plains Regions

Stewards in the Mountain/Pecos and Plains regions contributed more than 1,100 hours and drove more than 8,700 miles to conduct Texas Archeological Stewardship Network activities during the last reporting period. They distributed approximately 500 educational materials and gave presentations to some 1,900 people. They assisted 138 individuals and agencies and recorded 32 new sites, monitored or investigated 91 other sites, and worked on analyzing or documenting 10 artifact collections.

Alvin Lynn drove more than 3,350 miles to contribute an impressive 344 hours. As part of an ongoing project, Lynn assisted David Maki of Archaeo-Physics, LLC in a geophysical survey of a large portion of an 1868 U.S. Army depot site (41RB111) in Roberts County last August. Several areas of interest were identified, including locations where military personnel are thought to have constructed dugouts during November and December 1868. The survey led to plans to excavate one of the suspected dugout locations. With the help of area volunteers, excavations over several days in November resulted in the exposure and documentation of one of the military dugouts as well as the recovery of a number of artifacts associated with the Army’s occupation of the site. In October, Lynn gave a Texas Archeology Month presentation in Pampa on the excavation of a site at Big Springs near Lefors in Gray County. Native Americans, surveyors, buffalo hunters, and military personnel had camped by the springs, leaving a variety of artifacts (see photo above right). Forty people attended the slide slow and artifact display. Lynn, “a well-known speaker,” was the draw, said Darlene Birkes, Gray County Historical Commission chair.

Marisue Potts hosted two groups of Andrews Independent School District students at her Mott Creek Ranch in Motley County, where science teacher Ricky Day organized, trained, and instructed the students in excavation techniques at a site believed to be a Late Prehistoric bison-processing camp.

Joe Rogers was particularly busy during October. A combined total of more than 950 people attended his presentations at various events, including the Museum Day celebration at the Panhandle-Plains Historical Museum in Canyon and the Fannin Junior High History Fair in Amarillo, where he demonstrated corn grinding, woodworking, and other skills. Rogers also spoke to industrial arts teachers, retired teachers, and vocational classes.

Rolla Shaller worked with fellow steward Alvin Lynn at the Evans Supply Depot site and helped Teddy Stickney locate and record several rock art sites in Randall and Oldham counties. During this reporting period, Shaller recorded 16 new sites and Stickney recorded six sites.

Cynthia Smyers recorded three new sites, monitored or assessed 12 other sites, worked with documenting six private collections, and assisted 15 individuals or agencies.

Evans Turpin completed the write-up on the Bill Bissell site in Pecos County, which will be published in the
April 2006 *Transactions of the Southwestern Federation of Archeological Societies.* Turpin gave a presentation on this site at the federation meeting in San Angelo in April 2005. In addition, he assisted several landowners and organizations.

Doug Wilkens kept busy with several investigations on the M-Cross Ranch in Roberts County. These include ongoing work at the Indian Springs site (41RB81), recording a rock cairn, testing several magnetic anomalies that had been identified during a geophysical survey at site 41RB110, and assisting in geomorphological surveys of the west pasture conducted by Charles Frederick and Mark Bateman from the University of Sheffield. Wilkens also presented a paper on the Archie King Ruins site at a TAS steward symposium in Austin.

Forty/Hill Country & Lakes/Brazos Regions

As usual, Jay Blaine has been very active. He reported a number of interesting calls requesting assistance in identifying historic metal artifacts and mentioned that the draft report on Los Adaes metal artifacts is near completion. David Calame has been busy as well, recording four new sites, monitoring an additional four, and drafting an article about a Lake Medina cache for the Southern Texas Archaeological Association journal *La Tierra*.

Kay Clarke continues to be one of our most active stewards in the north and central regions. She presented six talks, assisted a number of landowners, and offered more help on the World War II project than any other steward. She reported that the Texas Archeology Month archeology fair in Liberty Hill was very well attended, attracting more than 100 visitors, and probably will be held again in 2006. Her efforts will be featured in a local media piece.

Jose Contreras assisted landowners and other individuals, monitored sites, and gave a workshop presentation. R.C. Harmon gave a public presentation, monitored or investigated several sites, and assisted landowners and others on 12 occasions. Max Hibbits provided archeological assistance to several folks and organizations and participated in a site investigation. Doris Howard recorded two new sites in the Llano Uplift region and helped numerous people and organizations in the area.

Bryan Jameson maintains active leading roles in the TAS and the Tarrant County Archeological Society, which takes up much of his limited spare time. He continues to work with Frank Sprague on sites in Hamilton County and other parts of North Texas. Laurie Moseley reported many miles driven and many people assisted, including a number of private landowners in Parker County. Moseley examined several archeological collections as well.

Ona B. Reed said her favorite activity was spending time with other stewards on the Devils, Pecos, and Rio Grande rivers during the last week of 2005. (She also reports she is fixing up her aircraft for some trail-tracking work.)

May Schmidt helped finish lab work associated with the TAS field school at the Stallings Ranch, and she assisted with the site 41CM1 report draft (on the 1963 TAS field school). Jim Schmidt recorded a new site, examined four collections, and assisted three landowners, among other work. A regular volunteer at the THC archeology lab, Jim also organized Archeology Day at the French Legation Museum in Austin — a Texas Archeology Month event — and both Schmidts created an archeology exhibit for the Festival de las Plantas at the Lady Bird Johnson Wildflower Center in Austin.

Jimmy Smith presented several programs on archeological topics, assessed two collections, and assisted in fieldwork that we hope will lead to an SAL nomination for a site in Johnson County. Frank Sprague answered several calls from Hamilton and surrounding counties, assisting landowners and others with historic and prehistoric sites. Sprague also organized and gave archeology presentations. A San Angelo television station interviewed Alice Stultz about the Paint Rock pictographs; the segment aired four times in the San Angelo area. Concho Valley Archeological Society members were on hand at the interview, as was landowner Fred Campbell.

Art Tawater provided the muscle (and brains) for site assessments on the Smith Ranch in Johnson County. We hope Tawater’s work will result in SAL designations for that property. He continues to build his comparative faunal collection and would be interested in hearing about any complete specimens other stewards may have.

Kay Woodward logged 1,441 miles driving to and fro across the Hill Country for presentations, fieldwork, assistance to landowners, and other tasks. She said the Kokopelli Project, a private ranch inventory/assessment near Harper, is now finished. A project report is forthcoming. Woody Woodward traveled 1,697 miles (chasing after Kay?) over the past months. He recorded two new archeological sites, monitored 10 others, and assisted 11 landowners.

Bill Young continues to focus his work on inventorying historic cemeteries in Navarro County and writing numerous historical articles for the *Corsicana Daily Sun.* He mentioned that he kept an eye on 22 sites over the past months, examined two private collections, and gave seven presentations on archeological or historical topics.
Forest & Independence/Tropical Regions

Region 5 stewards continue to be extremely active, partly due to ever-increasing development in East Texas. Patti Haskins of Gregg County assisted with a permanent archeological exhibit at the Depot Museum in Henderson that explains what archeologists do and how they use data recovered from archeological sites to interpret the past. In addition, Haskins is involved in the organization of the Rusk County Cemetery Task Force, whose goal is to preserve and document many of the lost cemeteries in Rusk County.

Sheldon Kindall of Harris County assisted the Chambers County Historical Commission at the Fort Anahuac ruins and continues to search for the historic French fort site Champ d’Asile that was on the Trinity River in 1818. Kindall volunteers a great deal of time to the ongoing work at the San Jacinto Battlefield as well.

Tom Middlebrook has been working with other stewards to relocate the Spanish Colonial site Mission Concepción and in the process has identified 12 previously unrecorded sites. He assisted with investigations at the D’Ortolan site, a Spanish Colonial rancho located on property he and his brothers own. Middlebrook continues to provide public outreach to Nacogdoches County schoolchildren through Boy Scouts and the public school system.

Sandra Rogers logged more than 2,000 miles during the past few months for archeological activities, recently finishing an exhibit of historic Texas prison system photos at the Walker County Education Center in Huntsville. She remains active in the Brazoria County Antebellum Plantation Survey and has recorded sites in numerous counties throughout the state. Rogers is a tireless preservationist whose work will benefit Texans for many generations to come.

Tom Speir of Harrison County has been diligently researching the old town of Elysian Fields for several years and recently finished an extensive report on the site. Speir, like many of our stewards, has a regular job but nevertheless manages to devote a tremendous amount of time to archeology.

Robert Turner of Camp County completed an article entitled “Hematite Axes of Northeast Texas and the Adjoining Regions of Arkansas and Louisiana along the Red River,” which he submitted for publication to the Bulletin of the Texas Archeological Society. We look forward to reading Turner’s contribution to the archeological literature on Northeast Texas.

Mark Walters of Smith County is always one of our most active stewards. He submitted an article to the Journal of Northeast Texas Archaeology and a second article to the Journal of Caddoan Archaeology. In addition, Walters organized the 13th Annual East Texas Archeological Conference held this year in Tyler. A tireless champion of East Texas archeology, Walters’ contributions to this field continue to reflect his tremendous efforts.

The stewards of Region 6 have been equally active in their efforts to protect and preserve the archeology of the state. Pat Braun of Aransas County clocked more than 3,500 miles on her vehicle in pursuit of her archeological interests. One project was helping to organize the excavation of a Civil War salt works site on St. Charles Bay. Texas Tech University graduate student Jenni Monnat excavated the site under the direction of Dr. Tamra Walter. A former IBM executive, Braun put her computer knowledge to work by creating a database of information on the vast number of artifacts recovered from site 41VT141, a Paleoindian site in Victoria County.

Jimmy Bluhm of Victoria County has been working at site 41VT141 for more than three years, and his efforts have attracted statewide attention. Dr. Mike Waters of Texas A&M University conducted research on the site’s geomorphology, and University of Texas at Austin professor Michael Bevers has scheduled a 2006 summer field school at the site. Bluhm is very excited about the upcoming work — and rightfully so. Bluhm and numerous other stewards and volunteers have done a tremendous job of excavation and recording at site 41VT141.

Johnney and Sandra Pollan have been very busy lately documenting a collection of pre-Columbian artifacts for display at the Brazosport Museum of Natural Science. They also mapped plantation sites and conducted archival research for the Brazoria County Antebellum Plantation Survey.

Nelson Marek of Calhoun County assisted in the curation of artifacts from site 41VT141 and has investigated the lost site of Fort Lavaca, located somewhere along the banks of the Lavaca River in Jackson County. This research is part of a larger project conducted by Margaret Howard of the Texas Parks and Wildlife Department to record the six forts built in the early-19th century by the Mexican government to curtail the westward expansion of the United States. Marek may have located the Fort Lavaca site; he plans further investigations.
LOOKING AHEAD

MAY 19 – 22, 2006
33rd Annual Conference of the American Rock Art Research Association. Presentations on the rock art of Utah and the world; keynote address by Fred Blackburn, a local historian and historic inscriptions specialist; and numerous field trips. Bluff, Utah, bordering the Navaho Nation. Call 888/668-0052 or visit www.arara.org.

MAY 27 – 29, 2006
Leupp Kiln Conference. Archeologists, potters, students, and others will learn about traditional ceramic technology, fire pottery replicas, and gather clays for use at later kiln conferences. Near Yellowjacket, Colorado, 15 miles northeast of Cortez. http://groups.msn.com/LueppKilnConference

JUNE 10 – 17, 2006
Texas Archeological Society Field School. Return to the Stallings site near Paris, Texas. Participants may choose to survey, excavate, or process artifacts in the field lab. Call 800/377-7240 or visit www.txarch.org.

JULY 22 – 23, 2006
Texas Archeological Stewardship Network Annual Workshop. Texas Historical Commission volunteer archeological stewards attend workshops to sharpen their skills and meet with agency staff and other stewards from around the state. Call 512/463-6096.

AUGUST 10 – 13, 2006
Pecos Conference. Scholars, archeologists, and historians working in the southwest report recent findings and exchange ideas; general public welcome. This year the conference will be held along the San Juan River near Salmon Ruins, Elks Campground, 25 miles east of Bloomfield, New Mexico. www.swanet.org

SEPTEMBER 7 – 10, 2006
11th Annual Conference of the American Cultural Resources Association. Meeting of cultural resource professionals in the fields of archeology, historic preservation, history, architectural history, historical architecture, and landscape architecture. Westin Great Southern Hotel, Columbus, Ohio. Call 607/257-2126 or visit www.acra-crm.org.

OCTOBER 2006
Texas Archeology Month. Archeology fairs, exhibits, tours of archeological sites, and lectures during the entire month of October in communities across the state. Call 512/463-6096 to request a calendar of events or visit www.thc.state.tx.us.

OCTOBER 15 – 20, 2006
Pecos Experience: The Art and Archeology of the Lower Pecos. Led this year by French rock art scholar and explorer Dr. Jean Clottes, known for his research into the origins and meaning of European Paleolithic rock art. Additional instruction by Dr. Carolyn Boyd, Elton Prewitt, and many others. Shumla School, Comstock. Call 432/292-4848 or visit www.shumla.org.

NOVEMBER 8 – 11, 2006

APRIL 25 – 29, 2007
72nd Annual Meeting of the Society for American Archaeology. Save the date for the national meeting in Austin. Call 202/789-8200 or visit www.saa.org.
Recent and Available THC Archeological Publications

Investigations at the Salt Well Slough Site, 41RR204, a Salt-Making Site in Red River County, Texas. By Nancy Adele Kenmotsu, with contributions by Timothy K. Perttula. Archeological investigations conducted along the middle Red River during the 1991 Texas Archeological Society annual field school included excavation of a suspected salt-making locale near Caddo village sites. The evidence, especially characteristics of the ceramics collection and the presence of ephemeral hearths, suggests that prehistoric Caddos produced salt at the Salt Well Slough site. Texas Historical Commission Archeological Reports 4. 34 figs., 32 tables, 146 pp. $15.00.

Finding Sha’chahdinnih (Timber Hill): The Last Village of the Kadohadacho in the Caddo Homeland. By Mark L. Parsons, James E. Bruseth, Jacques Bagur, S. Eileen Goldborer, and Claude McCrocklin. A combination of historical and archeological evidence conclusively identifies the site of the last village of the Kadohadacho Caddo in Marion County, Texas. Includes discussions of Kadohadacho history, how the site was located and excavated, the results of artifact analysis, and a macrobotanical analysis focusing on corn. Texas Historical Commission Archeological Reports 3. 36 figs., 4 tables, 114 pp. $15.00.

Archeological and Archival Investigations of the Jonesborough Site (41RR15), Red River County, Texas. By Nancy G. Reese, with contributions by Timothy K. Perttula. A comprehensive archival search and critique of previous archeological work suggests an alternate locality for Jonesborough, one of the earliest Anglo American frontier settlement sites in Texas. Texas Historical Commission Archeological Reports 2. 19 figs., 5 tables, 96 pp. $5.00.

Comparing Dimensions for Folsom Points and Their By-products from the Adair-Steadman and Lindenmeier Sites and Other Localities. By Curtis Tunnell and LeRoy Johnson. Data for Folsom dart point specimens from the Adair-Steadman and Lindenmeier artifact collections are summarized and compared. Comparison is also made with certain dimensional variables published for Folsom collections from six other sites or locales. Texas Historical Commission Archeological Reports 1. 17 figs., 7 tables, 60 pp. $5.00.

The Life and Times of Toyah-Culture Folk as Seen from the Buckbollow Encampment, Site 41KM16 of Kimble County, Texas. By LeRoy Johnson. Office of the State Archeologist Report 38. 1994. 109 figs., 51 tables, 360 pp. $15.00.

Texas Archeology in the Classroom: A Unit for Teachers. Compiled by THC Staff. Includes background on archeology and ethnohistory; more than 20 activities, or lesson plans; and list of printed and audiovisual resources. May be reproduced by nonprofits for educational use only. 1998. Numerous illustrations, maps, 150 pp., punched for 3-hole binder. $7.00.

How to Plan and Manage an Archeology Fair. Compiled by TARL and THC Staff. Includes planning, promotion, and activity instructions for sponsoring an interactive archeology event. 1999, revised, Aug. 2000. 60 pp., photocopied, punched for three-hole binder. 10 cents per page.

Archeological Bibliography for the Central Region of Texas. Compiled by Helen Simons and William E. Moore. Includes key words, site number, and county indexes. 1997. 264 pp. $7.00.

The Steward: Journal of the Texas Archeological Stewardship Network (formerly The Cache). Vols. 5, 4, and 3 still available. $5.00 each.

ORDER FORM

Please send me copies of the following publications:

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Title (use key words in title)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postage and handling ($1 for first publication, 75 cents for each additional) ________

TOTAL enclosed: ________

Name: __
Organization: _______________________________________
Address: ___
City: ____________________________ State: __________ Zip: __________

Make check payable to Texas Historical Commission.

Send orders to TEXAS HISTORICAL COMMISSION
Attn: Archeology Division
P.O. Box 12276
Austin, TX 78711-2276

For more information: 512/463-6090
Nominee's name ___

Home phone (________) __________________________________

Address ___

Work phone (________) __________________________________

City/County __________________________ Zip ______________ Email address _______________

Please discuss any special areas of interest, expertise, or skill that make this nominee a good candidate for the stewardship network. If you have worked directly with the nominee, please describe what you did together. If more space is needed, please continue your description on a separate sheet, and include it when you submit your nomination.

Nominated by __ Date ______________________

Daytime phone (________) ________________________________ Email address __

Additional reference (other than nominator) __

EVENT TITLE: __

Event description: Be as specific as possible and give details. Provide descriptions of activities and presenters, topics of lectures and demonstrations and any other interesting details that will encourage the public to attend. Attach separate sheet if necessary.

EVENT DATE(S): ___________________________________ EVENT HOURS: __________________ ADMISSION FEES: ______________

Is event open to general public? (a requirement for Calendar listing) __

Event location (include name of place where event will be held, such as Blank County Museum):

NAME OF PLACE: __

STREET ADDRESS (INCLUDE DIRECTIONS IF NECESSARY): __

CITY: ________________________ COUNTY: ___

Event sponsor(s): __

Contact name, phone number and email address (if available) of one or two people who can be reached easily, and web address of organization. This information may be printed in the Calendar of Events booklet and listed on the THC web site:

(1) NAME: __ PHONE: ________________ EMAIL: ________________________________

(2) NAME: __ PHONE: ________________ EMAIL: ________________________________

WEB SITE (IF ANY): ___

Person, organization and address where main event sponsor can be reached by mail:

NAME __

ORGANIZATION ___

MAILING ADDRESS ___

CITY __________________________ STATE __________ ZIP __________

Number of TAM 2006 Calendar of Events booklets you request for distribution: _______ NONE _______ 25-50 _______ 50-100 _______ 100-200 _______ 200+__

Complete one form for each event and return by July 3, 2006, or email the required information by the same date. For additional information, email Molly Gardner at the address below or call 512/463-9505.

We welcome color photos of TAM 2005 events for possible publication in the TAM 2006 Calendar of Events booklet. We also can request permission to print photos from local newspapers if you provide a news clipping.